精心打磨的产品视频已准备就绪,它将带您深入JCQ5-66W放电计数器哪里有的魅力世界,让您重新发现产品的无限可能。
以下是:JCQ5-66W放电计数器哪里有的图文介绍
一、高压避雷器的定义: 金属氧化锌避雷器(MOA)是一种过电压保护装置,它由封装在瓷套内的若干非线性电阻阀片串联组成。其阀片以氧化锌为主要原料,并配以其它金属氧化物,所以又称为氧化锌(Zno)避雷器。 二、高压避雷器的作用 在额定电压下,流过氧化锌避雷器阀片的电流仅为10-5A以下,相当于绝缘体。因此,它可以不用火花间隙来隔离工作电压与阀片。当作用在金属
氧化锌避雷器上的电压超过定值(起动电压)时,阀片“导通”将大电流通过阀片泄入地中,此时其残压不会超过被保护设备的耐压,达到了保护目地。HY5WZ-(5-216)/(13.5-562)电站型避雷器介绍: HY5WZ-(5-216)/(13.5-562)电站型避雷器是我公司结合了一般电站用避雷器的特点支服了碳化硅避雷器的不足、设计研发出来的一款高性能的专业用于电站的氧化锌避雷器,因此他具有操
作波放电电压低、陡坡电压无迟延,没有放电分散性等原始的避雷器没有的优点、同时也具有氧化锌可吸收雷电过电压、操作过电压和优点。可以大限芭的度对电力配电设备提供佳的保护。HY5WZ-(5-216)/(13.5-562)电站型避雷器的主要特点:1、从外型有结构设计方面来看;该款避雷器具有体积小、重量轻,耐碰撞、安装灵活等一些优点,其主要用于高压配电配内。2、从产品性能上看:该产品采用
整体模压成型设计、产品密封性、防潮防污性能都非常好、具有性能稳定、维护方便的特点。
氧化锌避雷器上的电压超过定值(起动电压)时,阀片“导通”将大电流通过阀片泄入地中,此时其残压不会超过被保护设备的耐压,达到了保护目地。HY5WZ-(5-216)/(13.5-562)电站型避雷器介绍: HY5WZ-(5-216)/(13.5-562)电站型避雷器是我公司结合了一般电站用避雷器的特点支服了碳化硅避雷器的不足、设计研发出来的一款高性能的专业用于电站的氧化锌避雷器,因此他具有操
作波放电电压低、陡坡电压无迟延,没有放电分散性等原始的避雷器没有的优点、同时也具有氧化锌可吸收雷电过电压、操作过电压和优点。可以大限芭的度对电力配电设备提供佳的保护。HY5WZ-(5-216)/(13.5-562)电站型避雷器的主要特点:1、从外型有结构设计方面来看;该款避雷器具有体积小、重量轻,耐碰撞、安装灵活等一些优点,其主要用于高压配电配内。2、从产品性能上看:该产品采用
整体模压成型设计、产品密封性、防潮防污性能都非常好、具有性能稳定、维护方便的特点。
樊高电气销售部有限公司秉承“科技的光芒源于人性设计,创精的品牌源于产品品质”的经营理念。以卓越的品质,周到的服务和更具竟争力的价格,为社会,为客户提供 辽宁抚顺固定金具厂产品的解决方案,并愿与所有关心创精、信赖创精的朋友一起,携手共创辉煌明天。
与瓷套式避雷器不同,它是悬挂在空中的,必须采用三维电场、用有限元法计算其电位分布[5]。由于在结构上不能采用外并电容的均压措施。避雷器高度超过5m时,如不采取措施,其电位分布不均匀系数将达1.2,荷电率达98%。改善电位分布
的设计,并通过改变均压环的数量、大小、放置位置及深度等措施使500 kV无间隙线路避雷器(5.4m高)电位分布不均匀系数限制在10.4 %以下[5],详在避雷器整体模压注射硅橡胶过程中,避雷器各部分均处于受热状态(100℃以上)。当模压硫化完成(即避雷器密封完成),冷却后内部将形成低气压。由“巴申曲线”可知,此时电阻片沿面闪络电压大为下降,有可能在较低电压下损坏避雷器。这是生产厂家容易忽略的工艺技
术问题。 (8)影响间隙放电稳定性的因素 间隙放电电压的稳定性是避雷器保护性能的标准,棒-棒纯空气间隙与环-环带绝缘子支撑间隙放电特性本身存在差异。前者是极不均匀电场,后者是稍不均匀电场;前者放电电压稍低、分散性小,后者不仅分散性大,且受绝缘子污秽性能影响明显,当污秽引起漏电流且达到一定值时,它与避雷器本体漏电流形成一个“分压器”,明显地改变了整个避雷器电位分布,提高了避雷器放电电压值
,这是设计者必须给予充分考虑的。 与瓷外套避雷器不同,复合外套避雷器的外套采用有机高分子材料,它必须进行许多验证其特性的试验[6],如耐天侯试验、耐电蚀试验、耐盐雾试验等。这些试验的要求及试验方法大部分都已体现在IEC新版本的标准中。 (1)复合外套起痕和电蚀试验 按比例制作了避雷器比例元件。雾室温度20~25℃,盐雾中NaCl含量为9.8kg/m3,以3.9L/ m3·h速度喷
向比例元件。同时将等比例持续运行电压Uc施加于比例元件上,持续时间1000h。试验期间无过流中断,比例元件复合外套无起痕、裂缝和树枝状裂纹产生,伞裙未击穿。 (2)热机试验及沸水煮试验 该项试验用于验证避雷器在冷热、机械力共同作用下法兰与环氧玻璃纤维布筒结合部分粘合剂的性能,该项试验分两步进行: 1)比例元件在下列条件同时作用下进行试验:①2次(-35±5)℃ ~(50±5)℃冷
热循环,高低温度至少保持8h,每一循环持续24h;②给比例元件施加50%额定拉伸负荷的负荷力。 2)比例元件在0.1% NaCl的溶液中沸煮42h后,立即放进环境温度的水溶液中浸泡24h,取出后在环境温度空气中静放24h,直到表面干燥。 (3)爬电比距的选择 硅橡胶的复合外套的耐污秽性能比瓷套高出66%。这是由硅橡胶的憎水性所决定的,憎水性来自硅橡胶分子中具有排斥水分子天性的。试
验结果表明: 1)复合外套耐污秽性能远高于瓷套,但尚未取得定量的结论。
的设计,并通过改变均压环的数量、大小、放置位置及深度等措施使500 kV无间隙线路避雷器(5.4m高)电位分布不均匀系数限制在10.4 %以下[5],详在避雷器整体模压注射硅橡胶过程中,避雷器各部分均处于受热状态(100℃以上)。当模压硫化完成(即避雷器密封完成),冷却后内部将形成低气压。由“巴申曲线”可知,此时电阻片沿面闪络电压大为下降,有可能在较低电压下损坏避雷器。这是生产厂家容易忽略的工艺技
术问题。 (8)影响间隙放电稳定性的因素 间隙放电电压的稳定性是避雷器保护性能的标准,棒-棒纯空气间隙与环-环带绝缘子支撑间隙放电特性本身存在差异。前者是极不均匀电场,后者是稍不均匀电场;前者放电电压稍低、分散性小,后者不仅分散性大,且受绝缘子污秽性能影响明显,当污秽引起漏电流且达到一定值时,它与避雷器本体漏电流形成一个“分压器”,明显地改变了整个避雷器电位分布,提高了避雷器放电电压值
,这是设计者必须给予充分考虑的。 与瓷外套避雷器不同,复合外套避雷器的外套采用有机高分子材料,它必须进行许多验证其特性的试验[6],如耐天侯试验、耐电蚀试验、耐盐雾试验等。这些试验的要求及试验方法大部分都已体现在IEC新版本的标准中。 (1)复合外套起痕和电蚀试验 按比例制作了避雷器比例元件。雾室温度20~25℃,盐雾中NaCl含量为9.8kg/m3,以3.9L/ m3·h速度喷
向比例元件。同时将等比例持续运行电压Uc施加于比例元件上,持续时间1000h。试验期间无过流中断,比例元件复合外套无起痕、裂缝和树枝状裂纹产生,伞裙未击穿。 (2)热机试验及沸水煮试验 该项试验用于验证避雷器在冷热、机械力共同作用下法兰与环氧玻璃纤维布筒结合部分粘合剂的性能,该项试验分两步进行: 1)比例元件在下列条件同时作用下进行试验:①2次(-35±5)℃ ~(50±5)℃冷
热循环,高低温度至少保持8h,每一循环持续24h;②给比例元件施加50%额定拉伸负荷的负荷力。 2)比例元件在0.1% NaCl的溶液中沸煮42h后,立即放进环境温度的水溶液中浸泡24h,取出后在环境温度空气中静放24h,直到表面干燥。 (3)爬电比距的选择 硅橡胶的复合外套的耐污秽性能比瓷套高出66%。这是由硅橡胶的憎水性所决定的,憎水性来自硅橡胶分子中具有排斥水分子天性的。试
验结果表明: 1)复合外套耐污秽性能远高于瓷套,但尚未取得定量的结论。
复合外套提高的耐污性能可留给用户、电力部门作为裕度考虑。因此,爬电比距的设计仍按瓷外套标准考虑。这一设计还受两个外界因素影响:①复合外套比瓷套更容易提高爬电比距,但必须保证电弧小距离(如110kV下≥1m);空气有间隙避雷器本体爬距≥1.7cm/
kV即可认为是的,因为,正常运行电压下避雷器本体几乎不承受任何电压值;环-环绝缘支撑有间隙避雷器,其爬距应为避雷器本体爬距与支撑绝缘子爬距之和,作者建议,爬电比距应分别规定,避雷器本体≥1.7cm/kV,支撑绝缘子≥1.7cm/kV,因为在正常运行和雷击瞬间不同工况下,两者都需分别承受了几乎100%的过电压,避雷器总体爬电比距≥3.4cm/kV。我国无间隙线路避雷器的使用量超过有间隙线路避雷器
,90%的330kV、500kV线路使用无间隙线路避雷器。无间隙避雷器在绝缘配合上,保护性能分散性小,仅仅取决于一条U-I特性曲线,保护裕度大。避雷器运行事故率已低于0.03/100相·年以下,且无间隙线路避雷器限制操作过电压的优点是目前有间隙线路避雷器所不能达到的。表4列出两种线路避雷器的技术要求及性能[无间隙线路避雷器的运行条件除满足一般电站避雷器要求外,还应满足以下条件:
kV即可认为是的,因为,正常运行电压下避雷器本体几乎不承受任何电压值;环-环绝缘支撑有间隙避雷器,其爬距应为避雷器本体爬距与支撑绝缘子爬距之和,作者建议,爬电比距应分别规定,避雷器本体≥1.7cm/kV,支撑绝缘子≥1.7cm/kV,因为在正常运行和雷击瞬间不同工况下,两者都需分别承受了几乎100%的过电压,避雷器总体爬电比距≥3.4cm/kV。我国无间隙线路避雷器的使用量超过有间隙线路避雷器
,90%的330kV、500kV线路使用无间隙线路避雷器。无间隙避雷器在绝缘配合上,保护性能分散性小,仅仅取决于一条U-I特性曲线,保护裕度大。避雷器运行事故率已低于0.03/100相·年以下,且无间隙线路避雷器限制操作过电压的优点是目前有间隙线路避雷器所不能达到的。表4列出两种线路避雷器的技术要求及性能[无间隙线路避雷器的运行条件除满足一般电站避雷器要求外,还应满足以下条件: